24 research outputs found

    Apraxia in progressive nonfluent aphasia

    Get PDF
    The clinical and neuroanatomical correlates of specific apraxias in neurodegenerative disease are not well understood. Here we addressed this issue in progressive nonfluent aphasia (PNFA), a canonical subtype of frontotemporal lobar degeneration that has been consistently associated with apraxia of speech (AOS) and in some cases orofacial apraxia, limb apraxia and/or parkinsonism. Sixteen patients with PNFA according to current consensus criteria were studied. Three patients had a corticobasal syndrome (CBS) and two a progressive supranuclear palsy (PSP) syndrome. Speech, orofacial and limb praxis functions were assessed using the Apraxia Battery for Adults-2 and a voxel-based morphometry (VBM) analysis was conducted on brain MRI scans from the patient cohort in order to identify neuroanatomical correlates. All patients had AOS based on reduced diadochokinetic rate, 69% of cases had an abnormal orofacial apraxia score and 44% of cases (including the three CBS cases and one case with PSP) had an abnormal limb apraxia score. Severity of orofacial apraxia (but not AOS or limb apraxia) correlated with estimated clinical disease duration. The VBM analysis identified distinct neuroanatomical bases for each form of apraxia: the severity of AOS correlated with left posterior inferior frontal lobe atrophy; orofacial apraxia with left middle frontal, premotor and supplementary motor cortical atrophy; and limb apraxia with left inferior parietal lobe atrophy. Our findings show that apraxia of various kinds can be a clinical issue in PNFA and demonstrate that specific apraxias are clinically and anatomically dissociable within this population of patients

    Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production

    Get PDF
    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r2 = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task may be sufficient for detecting most cases of apraxia of speech and distinguishing between nfvPPA and lvPPA

    Age-Related Impairment of Ultrasonic Vocalization in Tau.P301L Mice: Possible Implication for Progressive Language Disorders

    Get PDF
    Tauopathies, including Alzheimer's Disease, are the most frequent neurodegenerative diseases in elderly people and cause various cognitive, behavioural and motor defects, but also progressive language disorders. For communication and social interactions, mice produce ultrasonic vocalization (USV) via expiratory airflow through the larynx. We examined USV of Tau.P301L mice, a mouse model for tauopathy expressing human mutant tau protein and developing cognitive, motor and upper airway defects.At age 4-5 months, Tau.P301L mice had normal USV, normal expiratory airflow and no brainstem tauopathy. At age 8-10 months, Tau.P301L mice presented impaired USV, reduced expiratory airflow and severe tauopathy in the periaqueductal gray, Kolliker-Fuse and retroambiguus nuclei. Tauopathy in these nuclei that control upper airway function and vocalization correlates well with the USV impairment of old Tau.P301L mice.In a mouse model for tauopathy, we report for the first time an age-related impairment of USV that correlates with tauopathy in midbrain and brainstem areas controlling vocalization. The vocalization disorder of old Tau.P301L mice could be, at least in part, reminiscent of language disorders of elderly suffering tauopathy

    Primary Progressive Aphasias and Their Contribution to the Contemporary Knowledge About the Brain-Language Relationship

    Full text link

    Grey and white matter brain network changes in frontotemporal dementia subtypes

    No full text
    Background: Frontotemporal dementia (FTD) comprises of three clinical syndromes, behavioural-variant frontotemporal dementia (bvFTD), semantic dementia (SV-PPA), and progressive nonfluent aphasia (NFV-PPA) with unique underlying neuroanatomical deficits. To date, however, grey matter structural differences and their connecting white matter tracts in this network have been mostly characterised in comparison to controls, whereas within FTD subtype comparisons in the same patients have not been explored.   Methodology: In 94 participants, including bvFTD (n = 16), SV-PPA (n = 16) and NFV-PPA (n = 16), as well as an age-matched control group (n = 46), we employed voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to examine grey and white matter key signatures in each of the three FTD subtypes.   Results: Our results showed that bvFTD had specific ventromedial prefrontal cortex and striatum grey matter atrophy along with their connecting white matter tracts compared to other FTD subtypes. By contrast, SV-PPA showed additional temporal pole grey matter damage to bvFTD and grey and white matter temporal, amygdala and insula changes compared to NFV-PPA. Finally, NFV-PPA showed mild insula grey and white matter changes compared to bvFTD but differed from SV-PPA only on anterior corpus callosum white matter changes.   Conclusions: Our findings clearly indicate that not only grey matter regions of the FTD network but also their white matter connecting tracts have specific signatures for each FTD subtype. These promising findings highlight how neural network approaches can shed new light on neurodegenerative conditions and FTD in particular, which will inform future diagnostic and disease management
    corecore